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Monte Carlo methods are used to investigate the relationship between the power of different 
pretests for autocorrelation, and the Type I error and power of the significance test for a 
resulting two-stage estimate of the slope parameter in a simple regression. Our results suggest 
it may be preferable to always transform without pretesting. Moreover we find little room for 
improvement in the Type I errors and power of two-stage estimators using existing pretests for 
autocorrelation, compared with the results obtained given perfect knowledge about when to 
transform (i.e., given a perfect pretest). Rather, researchers should seek better estimators of the 
transformation parameter itself. 

1. Introduction 

There is a vast literature concerned with the implications of autoregressive 
disturbances in a linear regression model, and with various alternative estimation 

methods which may yield better results for such a model. [See Cochrane and 
Orcutt (1949), Durbin (1960), Fomby and Guilkey (forthcoming), Hildreth 

and Lu (1960), and Sargan (1964).] Of course, if we do not know whether the 
model we are dealing with has an autoregressive disturbance term, we may not 
be able to decide which estimation method to use. This problem has led to 
interest in the relative power and other properties of different tests of the null 
hypothesis of no autocorrelation. [See Durbin and Watson (1950,1951), Jenkins 
(1954, 1956), Hannan (1957), McGregor (1960), Theil and Nagar (1961), 
Henshaw (1966), Hannan and Terre11 (1968), Koerts and Abrahamse (196X), 
Abrahamse and Koerts (1967), Geary (1970), Habibagahi and Pratschke 
(1972), Belsley (1973), Blattberg (1973), Harrison (1975), and Schmidt and 
Guilkey (1975).] However, relatively little attention has been paid to the impact 

of the procedure used to test the hypothesis of no autocorrelation on the final 
results achieved in estimating the regression coefficients of the assumed linear 
relationship. 

*Financial support for this study was provided by the Faculties of Graduate Studies and 
Research and Business Administration and Commerce of the University of Alberta. The 
authors would like to thank an anonymous referee for his many helpful suggestions. 
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Kmenta (1971, p. 296) observes that ‘in most studies concerned with estimating 
regression equations from time-series data, the value of the d statistic is presented 
along with the other estimates. The question then is what action, if any, is to be 
taken in response to a particular outcome of the test? If no autoregression is 
indicated, we can retain the least squares estimates. . .’ When autoregression 
is indicated, an autoregressive transformation of some sort is often performed. 
What if some alternative test for autocorrelation is used though? Habibagahi 
and Pratschke (1972) report the results of a Monte Carlo experiment designed 
to compare the powers of the Durbin-Watson and Geary tests for autocorrela- 
tion. They find that in the limiting case of no autocorrelation the concordance 
of the Durbin-Watson and Geary tests is not close, despite the fact that both 
tests appear to yield approximately the same Type I error. Harrison (1975), 
and Schmidt and Guilky (1975) have replicated the Monte Carlo experiment 
carried out by Habibagahi and Pratschke, and have presented evidence question- 
ing some of their conclusions. Nevertheless Habibagahi and Pratschke’s work 
still brings to mind an interesting set of questions. 

A different set of decisions concerning the presence of autocorrelation 
would result in a different set of decisions concerning when to retain the original 
least squares regression results and when to adopt some other estimation 
procedure. How much difference would this make in terms of the final estimation 
results? Is it crucial to continue the search for new tests for autocorrelation? 
How does this problem rank in importance relative to other problems 
encountered in the estimation of autoregressive relationships? We will attempt 
to address these questions in the context of the following model. 

2. The model 

We have chosen to use the model 

and 
y, = a+Pt+&,, I = 1,2, . . . . T, (1) 

Et = P&t-l+/47 

where the pt are independently, normally distributed with mean 0 and variance 
1. The explanatory variable in this model can be thought of as a first-order 
autoregressive process with an autoregressive parameter equal to 1.0 and a 
random error term identically equal to zero. This is the model which was used 
by Habibagahi and Pratschke (1972), Harrison (1975) and Schmidt and Guilkey 
(1975) to compare the powers of the Durbin-Watson and Geary tests for serial 
correlation. 

We have carried out our Monte Carlo experiments1 for T = 30, 50, p = 0.0, 
0.3, 0.5, 0.7, 0.9, and p = 0.0, 1.5, using generated samples of 1,000 repetitions 

IWe used in our study the Chen random normal number generator [Chen (1971)l for which 
satisfactory statistical properties are reported. The computer used is an Amdahl47OV/6 at the 
University of Alberta computer center. 
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for each combination of values of T, p, and 8. For each repetition ordinary 
least squares was used to estimate model (l), and the least squares residuals 
were calculated. 

Six different decision rules were then used to test the null hypothesis 
H,:p = 0 against the one-sided alternative Hz :p > 0 in our Monte Carlo 
environment where p 2 0.0: 

(1) 
(2) 
(3) 

(4) 

No test; always assume Ho : p = 0. 

Geary test using the lower critical value at a 5 percent level of significance.2 

Durbin-Watson test using the lower bound at a 5 percent level of signifi- 
cance. 

(5) 

Joint Geary and Durbin-Watson test using the lower critical value for the 
Geary test and the lower bound for the Durbin-Watson test at a 5 percent 
level of significance for each of the two tests. 

Durbin-Watson test using the upper bound at a 5 percent level of signifi- 
cance. 3 

(6) No test; always assume Ha: p > 0. 

For each pair of y and t series, if H,:p = 0 is accepted then a t-statistic is used 
to test the null hypothesis H,, :fi = 0 against the two-sided alternative hypothesis 
Ha: p # 0 at a 5 percent level of significance. If Ho : p = 0 is rejected in favor 
of the alternative H,:p > 0, then the Cochrane-Orcutt iterative technique is 
used to reestimate model (1). The results from this transformed regression are 
then used to test the hypothesis H,:p = 0 against the alternative H,$ # 0 
at a 5 percent level of significance.4 

ZFor T = 30, P(t 5 9) = 0.0307 while P(r g 10) = 0.0680. For T = 50, P(r 5 18) = 
0.0427 while P(r s 19) = 0.0762, where r is the number of sign changes in the residuals. 
[See Geary (1970) and Habibagahi and Pratschke (1972).] Schmidt and Guilkey (1975) suggest 
that this indeterminancy should be resolved by the use of a randomized rejection scheme when 
the value of r falls between the lower and upper critical values of r. While this scheme does 
result in the appropriate Type I error in a Monte Carlo experiment, we doubt whether a 
practitioner testing for autocorrelation in a single series of regression residuals would employ 
such a scheme. 

3Theil and Nagar (1961) showed that the upper bound for the Durbin-Watson test is 
approximately equal to the true significance limit when the behavior of the explanatory variable 
is smooth in the sense that the first and second differences are small compared with the range 
of the explanatory variable itself. This is, in fact, the case for the explanatory variable in model 
(1). Schmidt and Guilkey (1975) criticized Habibagahi and Pratschke (1972) for using the lower 
bound for the Durbin-Watson test on these grounds. Schmidt and Guilkey’s Monte Carlo 
results support their criticism. 

4The Cochrane-Orcutt iterative transformation used in this study is identical to the version 
of the Cochrane-Orcutt iterative technique available as an option of the Time Series Processor 
(TSP) regression package. For a description of this transformation in TSP, see, for example, 
Hoskin (1974, pp. 32-33). See also Kmenta (1971, p. 288). Iteration was terminated when the 
change in the estimate of p was less than 0.005, or 20 iterations had occurred. The iterative 
process converged in considerably less than 20 iterations for all cases. 
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3. Our results when var (p,) = 1 

In table 1 we show the powers of our tests of significance for p using decision 
rules 2-5 for T = 30, 50 and p = 0.0, 0.3, 0.7, 0.9. These power results are 
not affected by the value of j3. [See Nakamura and Nakamura (1976) for a more 
complete of this point.] We note that our figures in table 1 are quite 
similar to those derived by Schmidt and Guilkey (1975). When the lower bound 
is used for the Durbin-Watson 

estimation results, in terms of the Type I errors for the test of 
significance of the null H,:p = 0, are shown in table 2 for decision 
rules l-6 and T = 30, 50. For 0.0 < p < 1.0 the Type 1 error is seen to be 
smaller the larger the number of transformations regressions 
indicated by the decision rule adopted. The Type I error made for decision 
rule 6 when we always assume Ha : p > 0, and hence always is closest 
to the 5 percent critical region specified for all values of p except p = 0.0. 
Nevertheless even when we always perform a transformation 

explanatory variable t and 
the fact that, even when p = 0.0, the sample autocorrelations disturbance 
term are not exactly zero. As the autocorrelation explanatory 
variable is increased from 0.0 to 1.0 with p = 0.0, the observed Type I errors 
first rise above the specified level of 5 % and then fall below 5 percent. 
For a preliminary discussion 

reassuring, though not very useful for 
comparative 

results when var (pt) = 625 

In order to be able to observe the differential impact of our six decision 
rules on the power of the test of significance for /l when j? = 1.5, we now 
modified model (1) by setting the variance of ,u at 625. The Monte Carlo 
experiment described in section 2 was then repeated once again using this 
modified model. 
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Table 2 

Type I errors for test of significance for slope coefficient at 5 percent level of significance, 
B = 0.0. 

T= 30 T= 50 
Decision 
rule” p=o.o p=o.3 pzo.5 p=o.7 p=o.9 p=o.o p=o.3 p=o.5 p=o.7 p=o.9 

1 4.4b 14.1 24.5 40.5 62.8 4.3 13.4 26.0 43.4 65.3 
2 4.4 13.1 21.0 27.7 39.9 4.2 11.2 15.1 16.0 28.5 
3 4.4 12.3 15.4 21.3 35.5 4.2 8.4 10.6 13.5 28.2 
4 4.4 12.0 15.4 20.9 35.5 4.2 8.6 10.5 13.5 28.2 
5 4.5 11.0 14.0 20.3 35.5 4.2 8.0 10.0 13.5 28.2 
6 7.6 9.5 13.2 19.7 35.3 6.2 7.0 10.0 13.5 28.2 

“See section 2 of the text for the definitions of these six decision rules. 
bEach of the numbers in the table gives the percentage of cases for which H,,:p = 0 was 

rejected. 

Table 3 

Powers of test of significance for slope coefficient at 5 percent level of significance, B = 1.5. 

T= 30 
Decision 
rule” p=o.o p=o.3 p=o.5 p=o.7 p=o.9 

1 77.7b 69.1 65.1 59.0 66.4 100.0 99.9 98.2 87.2 75.7 
2 77.2 65.1 53.7 38.8 44.3 100.0 98.7 87.6 60.3 39.6 
3 76.1 59.0 44.7 30.7 40.5 100.0 97.6 85.3 58.3 39.4 
4 75.9 58.5 44.3 30.7 40.5 100.0 97.6 85.3 58.3 39.4 
5 75.5 54.5 42.1 30.3 40.3 100.0 97.5 85.2 58.3 39.4 
6 74.0 50.6 40.7 30.1 40.2 100.0 97.5 85.2 58.3 39.4 

T=50 

p=o.o pzo.3 p=o.5 p=o.7 p=o.9 

“See section 2 of the text for the definitions of these six decision rules. 
bEach of the numbers in the table gives the percentage of cases for which Ho : B = 0 was 

rejected. 

The powers of decision rules 2-5 are the same as those shown in table 1 for 

the null hypothesis H,:p = 0 and the alternative hypothesis H,:p > 0, since 
the Durbin-Watson statistic is invariant with respect to changes in var (nt). 
[See Nakamura and Nakamura (1976).] Also the Type I errors for our test of 
significance of the null hypothesis Ho :/3 = 0 are identical to those shown in 
table 2 since the Type I errors for model (1) are also invariant with respect to 
changes in var &). [See Nakamura and Nakamura (1976).] However, the 
associated powers shown in table 3 for the test of significance for fl when 
/I = 1.5 are much lower than the uniform 100 % observed for all cases for model 
(1) with var (nt) = 1. For instance, when we always perform a transformation 
prior to testing the significance of j3, for p = 0.9 the Type I errors for this test 



A. and M. Nakamura, Impact of serial correlation tests 205 

are 35.3 percent for T = 30 and 28.2 percent for T = 50 as before, but now 

the associated powers when /I = 1.5 are only 40.2 percent and 39.4 percent. 
The severe drop in the power of our test of significance for p when /I = 1.5 

and the variance of p is increased from 1 to 625 becomes more understandable 
if we examine the corresponding population correlations between y and t in 
model (1) for T = 30, 50 and p = 0.0, 0.3, 0.5, 0.7, 0.9. These correlations are 
shown in table 4. Since the population correlation between y and t is given by 

Table 4 

Population correlations” (pyt) between y and tin model (1) when JY = 1.5. 

P 

T= 30 T= 50 

var(p) = 1 var(p) = 625 var(p) = 1 var(p) = 625 

0.0 0.9970 0.4609 0.9989 0.6546 
0.3 0.9968 0.4439 0.9988 0.6368 
0.5 0.9961 0.4102 0.9986 0.5999 
0.7 0.9942 0.3477 0.9979 0.5259 
0.9 0.9847 0.2207 0.9944 0.3530 

PfY = Wd/4Ml+ (82aa>lt where 0,” = var (,uJ(l -p2) and C$ is the 
variance of the t series. it is seen that, for a given value of /? > 0, the linear 

[See Nakamura and Nakamura (1976).] 

relationship between y and t becomes weaker the smaller the value of T, the 
larger the variance of p, and the larger the value of p. [See Nakamura and 

Nakamura (1976).j 
The pattern of Type I versus Type II errors implied by the power results 

shown in table 3 deserves some explanation too. For any given model - that is, 

for any given values of T, j_i', p and var (cc,) -the number of Type II errors 
should increase as the number of Type I errors decreases. This is the behavior 
observed for the Type II errors implied by the power results shown in table 3 
and the corresponding Type I errors shown in table 2. 

For any given decision rule, however, the number of Type I errors increases 
as p increases while the number of Type II errors increases too, and then begins 

to fall for T sufficiently small and p sufficiently large. This can be explained as 
follows. 

The Type II error for our test of significance of /? when p = 1.5 and we use 
decision rule 1 (i.e., we always assume H,:p = 0) is 

P(---t,,z,T-2 < U&i < ta,z.T-2), (2) 
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where b/S, is assumed to obey a t-distribution with T-2 degrees of freedom. 
Generalizing the relationship presented by Goldberger (1964, p. 242) for the 
expected value of the usual least squares formula for Sr,, we find that I?($) = 
BCT~ , where 

T-1 

Xt = t-(x, t/T), 

T-l 

1+2 ,p 

and b is the least squares estimator of j?. [For the derivation of these generalized 
expressions see Nakamura and Nakamura (1976).] Thus we can write the 

expected value of the usual formula for the variance of b as the product of a bias 
term, which we will denote by B, and the true variance of b denoted by a;. 

Substituting dE(S,2) for Sb, expression (2) can now be roughly approximated 

by5 
P(-t a/Z,T-2 < bl(abdB) < k,Z,T-2) 

1.5 b-l.5 
= P -ta,2,T_22/B-- < - < f”‘“.T-z@-~). (3) 

ab ab 

where 

(b- 1.5)/O, - N(O, 1). 

Using expression (3), the approximate values of the power of our test of 
significance for /I for decision rule 1 when T = 30 are 78.8, 74.5, 65.9, 50.0 and 
63.2 percent for p = 0.0, 0.3, 0.5, 0.7 and 0.9, respectively. These approximate 
values for the power follow the same pattern as p increases from 0 to 1 as the 

5Note that E(S) # JE(Sb2). [It can be shown that E(&) = J(E(Sb2)-2(T-2)).] The 
substitution in the text is used only to allow us to interpret the general pattern of falling and 
then increasing power shown in table 3. 
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observed values shown in table 3. Thus the pattern of falling and then increasing 
power shown in table 3 is seen to be due to the opposing effects of decreases 

in B, the bias term, and increases in 0,2, the true variance of the least squares 
estimator of p, as p increases from 0.0 to 0.9. 

6. Possible gains from improved transformation schemes 

Our results so far suggest that tests of significance for autocorrelation might 
best be dispensed with in estimating relationships similar to model (1) in favor 
of a practice of always transforming prior to testing the significance of p. (In 
other words, our results suggest that decision rule 6 should be substituted for 
decision rules 2-5.) This is an important point, given the established role which 
tests for autocorrelation have come to play in applied work, and the considerable 

effort which theoreticians and others have devoted in recent years to finding new 
and improved tests for autocorrelation. Moreover for true values of p > 0, 
when we always transform without first testing for autocorrelation the final 

estimation results obtained are what would be achieved given a ‘perfect’ test 
for autocorrelation. If these ‘perfect’ results are only slightly different (slightly 
better when p > 0 and slightly worse when p = 0) from the final results achieved 
using less perfect tests for autocorrelation such as the Durbin-Watson test, then 
further effort devoted to improving tests for autocorrelation probably will not 
result in any significant improvements in applied statistical practices and 
results. Looking at the bottom two lines of table 2 we see that the Type I errors 
obtained by transforming only when the Durbin-Watson test using the upper 
bound indicates significant autocorrelation (decision rule 5) and the Type I 
errors obtained by always transforming (decision rule 6) differ by at most 

3.1 percent for T = 30 and by at most 2 percent for T = 50. 
However, even when we always transform we are still left with unsatisfactorily 

large Type I errors for the standard test of significance for fi when p is large. It 
has been suggested that for time series of modest length obeying a relationship 
such as model (1) the Durbin modification of the Cochrane-Orcutt iterative 
technique may improve the efficiency of the resulting estimator of p. [See 

Durbin (1960) and Malinvaud (1966, p. 433).] A variety of other schemes have 
also been proposed for estimating, or correcting the estimate of p. [See 
Quenouille (1949), Hurwicz (1950), Kendall (1954), Marriott and Pope (1954), 
and Orcutt and Winokur (1969)]. It is interesting, therefore, to investigate how 
much improvement we would observe in the Type I errors for our test of signifi- 
cance for p if the true values of p could be determined exactly. 

In order to investigate this question, we repeated the Monte Carlo experiment 
described in section 2 once more with the following modifications. The variance 
of p was again set equal to 625. Secondly all transformations indicated by our 
decision rules l-6 were now performed using the true values of p. The results 
of this third experiment are shown in tables 5 and 6. 
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Table 5 

Powers of test of significance for slope coefficient at 5 percent level of significance with true 
p known, T = 30. 

/!?=o.o /3=1.5 
Decision 
rulea p=o.o p=o.3 p=o.5 p=o.7 p=o.9 p=o.o p=o.3 p=o.5 p=o.7 p=o.9 

1 4.4b 14.1 24.5 40.5 62.8 77.7 69.1 65.1 59.0 66.4 
2 4.4 13.0 20.9 22.6 21.2 77.6 65.9 54.1 32.4 24.7 
3 4.4 12.7 13.8 11.2 9.6 77.3 61.6 41.7 17.7 11.5 
4 t :; 12.3 13.7 10.5 9.4 77.3 60.9 40.9 16.9 11.3 

2 4.4 11.3 4.9 10.7 5.3 9.0 5.4 71.3 77.1 41.3 56.9 25.7 35.2 15.4 11.6 10.0 7.9 

%ee section 2 of the text for the definitions of these six decision rules. 
“Each of the numbers in the table gives the percentage of cases for which siO:B = 0 was 

rejected. 

Table 6 

Powers of test of significance for slope coefficient at 5 percent level of significance with true 
p known, T = 50. 

/?=o.o /3=1.5 
Decision -___ 
rules p=o.o p=o.3 p=os p=o.7 p=o.9 p=o.o p=o.3 p=o.5 p=o.7 p=o.9 

1 4.3b 13.4 26.0 43.4 65.3 100.0 99.9 98.2 87.2 75.7 
2 4.3 11.4 13.4 9.5 6.6 100.0 99.5 88.5 48.3 10.3 
3 4.3 9.1 7.0 5.4 5.5 100.0 98.5 84.5 42.6 9.0 
4 4.3 9.0 6.9 5.3 5.4 100.0 98.5 84.4 42.6 8.9 
5 4.4 8.5 6.0 5.3 5.4 100.0 98.4 84.1 42.6 8.9 
6 4.3 5.2 4.8 5.1 5.4 100.0 98.1 83.4 42.4 8.9 

“See section 2 of the text for the definitions of these six decision rules. 
bEach of the numbers in the table gives the percentage of cases for which Ho:/? = 0 was 

rejected. 

The results shown in these tables indicate that the problem of overly large 
Type 1 errors for the test of significance of j3 in relationships similar to model 
(1) could be virtually eliminated by always performing a transformation prior 
to testing the significance of /? if p could be estimated with sufficient accuracy. 

These results suggest that more attention should be paid to the development 
and use of alternatives to the Cochrane-Orcutt iterative technique for estimating 
autoregressive relationships. More attention should also probably be focused 
on the possibility of developing tests of significance for autoregressive models 
which can be applied both with and without transformation of the original data. 
[See Orcutt and James (1948), Ogawara (1951), Hannan (lg.%), McGregor 
(1962), McGregor and Bielenstein (1965), Jenkins and Watts (1968), and 
Nakamura, Nakamura and Orcutt (1976). 
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