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We first consider the performance of the Wu (1973) — Hausman (1978) (W-H) specification error
test as a test for the existence of ordinary least squares (OLS) bias. We discuss power properties of
the test under alternative null hypotheses, one of which has not previously been considered. We
next consider how the W-H test performs as an indicator of the extent (rather than the existence)
of an OLS bias problem, since this usage of the test seems common in applied studies. Finally
Monte Carlo methods are used to evaluate Wu'’s two-step estimation procedure involving the W-H
test as a pretest.

In this paper we consider the performance of a specification error test
proposed by Wu (1973) and by Hausman (1978) for detecting the ordinary
least squares (OLS) bias problem in a linear simultaneous equations model.’
For convenience, we refer to this test as the Wu- Hausman test. The
Wu-Hausman test is closely related to, though not identical to, a test Durbin

Slig 13 N no

(1954) presents.

We first consider the performance of the Wu—Hausman test as a test for
the existence of an OLS bias problem. We then consider whether the Wu-

*This research was supported in part by Social Sciences and Humanities Council of Canada
Research Grant 410-77-0339 and a Leave Fellowship. Earlier versions of this paper were presented
at the Econometric Society Meetings in New York, December 1982 and at an Econometrics
Workshop at the University of Chicago in January 1983, as well as at the World Congress of the
Econometric Society in Aix-en-Provence, August 1980. We are particularly grateful to Professors
T. Amemiya, J.J. Heckman, J. Kmenta, J. Thursby and K.F. Wallis for their comments and
encouragement at various crucial points in the development of this paper. We also thank
Professors R. Carter, R.W. Farebrother, T. Kariya, J. Ramsey, N.S. Revankar, H. Tsurumi and
D.M. Wu as well as anonymous referees and an associate editor for comments on earlier versions
of the paper. We are, of course, solely responsible for any remaining errors or misinterpretations.

1We are referring here to Wu’s 7; and to the alternative formulation of the test by Hausman
(1978, p. 1259). In this paper we do not discuss other proposed uses of the Wu and Hausman tests.
See Nakamura and Nakamura (1981) for a proof of the equality of the Wu and Hausman test
statistics in a linear model of the sort adopted in this paper.
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Hausman test or test statistic might be used to judge the extent, as opposed to
the existence, of an OLS bias problem. The test is often used in applied
settings where there are strong theoretical or other a priori reasons for
believing an OLS bias problem does exist. When the Wu-~Hausman test is
applied in such situations to determine whether there is a ‘significant” OLS bias
problem, perhaps it is really the extent of the bias problem that is at issue. Or
the practitioner may implicitly be trying to judge the seriousness of various
consequences of an OLS bias problem. For instance, an OLS bias problem will
result in a departure of the actual from the stated probability of a Type I error
for the usual r-test for the coefficient of an included endogenous variable.
Monte Carlo methods are used to explore the extent to which a two-step
estimation procedure proposed by Wu (1973), that uses the Wu—Hausman test
as a pretest, overcomes this testing problem.

2. Model, test statistic and null hypotheses

Consider the two-equation linear system given by the structural equations
=yt Ziay + Auy, (1)
and
=1t Lyt Zyys + vau,, (2a)
or equivalently by (1) and the reduced form equation
Va=2Z B+ Z,B, + Ayu, + Aju,. (2b)

In these equations y, and y, are (n X 1) vectors of observations;? Z, and Z,
are (n X K,) and (n X K,) matrices of observations on K, predetermined
variables that are included in the structural equation for y; and K, prede-
termined variables that are excluded from this equation; the u’s are (n X 1)
vectors of random disturbance terms that are each normally distributed with
mean zero and a variance of one; the a’s, v’s and 8°s are vectors of unknown
parameters; and A, A, and A, are unknown scalar parameters. It is assumed
that the structural equation for y; is identified: hence we must have K, > 1.
No assumption is made, however, concerning the identification of the struc-
tural equation for y,.}

2In the relevant papers of Wu (1973,1974) and Hausman (1978) v, is an (1 X G,) matrix. For
expositional convenience, in this paper we have set G, =1 as Durbin (1954) also does in his
original paper.

*In fact, in the papers of Wu (1973,1974) and Hausman (1978) the equation for y, is a reduced
form equation in the sense that only predetermined variables appear on the right-hand side, but no
structural equation for y, is given or asserted to exist nor is it assumed that any underlying
structural equation for y, is identified. In the spirit of their papers the predetermined variables in
Z, and Z, can be viewed simply as instruments for y,.
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Suppose we are concerned that the OLS estimator of «, in (1) is biased.
Such a problem might be motivation for testing

H}: B=0 versus HY: B+#0, (3)

where B is the asymptotic bias of the OLS estimator of «, in (1). We can
rewrite the reduced form disturbance term as A,u; + Aju, = v,, where v, is a
standard normal variable and £7? is the variance of the reduced form dis-
turbance term. Then for our model B is given by

cov(Auy, v,)  Adcov(ug,v,)

B=plim(b, — o) = plim(1/n)(yi4,y,)  var*(Z,B,) + £

“Mole) om0 monn) @

where b, is the OLS estimator of a;, A, =1— Z(Z{Z,) 'Z{, var*(Z,B,) =
var(Zz,Bz) — Bjeov(Z,, Z,)var(Z, )’Icov(Zz, Z)By, p = cov(uy, vy), and
R: 2.8, z, denotes the multlple coefficient of determination from the regres-
sion of ( y2 Z,B)) on Z,.* Or, if concern about an OLS bias problem arises
from the potential correlauon between y, and A u,, we might test

Hj: p=0 versus H,: p#0, (5)

where p is given for our model by

vty £0,) cov(Au,, €v,)
= corr{ A\ u;, v,) =
. g e yvar(A u, var(€v,)

_ Miteovl, v) = cov(uy, v,). (6)
g
Following a similar line of reasoning we might also consider testing
Hy: 8=0 versus H,: §#0, (7)
where
8 =cov(Au,, £v,) =X, Ecov(uy, v,) =X ép. (8)

4Notice that R»z’7113| z, will be larger the smaller £2 is compared with the variability of
Z\B, +Z,B, in (2b), and the larger the proportion is of the variability of y, that is explained by
the variables that are excluded from, as opposed to the variables that are included in, the equation
of interest for y,.
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The null hypothesis that Wu (1973) considers is H,. Durbin (1954) and
Hausman (1978) do not explicitly state the null hypothesis being tested.
Hausman and Taylor (1981, p. 13) propose the null hypothesis HJ stating: ‘It
appears in practice...that H; is frequently tested in situations where we can
infer from the subsequent actions taken that the hypothesis HF was
intended...’

The Wu-Hausman test may be used to test (3), (5) or (7). For our model, the
statistic for this test may be written as®

T,=c,(Q*/Q,). (9)

where ¢, = (n - K, - 2G,)/G,, Q* = (b, — ‘52)'[()”2’-’42}’2)_1 -

(V3A ) b = by), Q=04 0% Q,=(y,—»b)VA(y, = 1b)). b,
and A, are defined as above, b,=(y;4,),) 'yjA,y, is the instrumental
variables (IV) method estimator of a; in (1), and 4,=2Z(Z'Z) 'Z'—
Z(Z{Z,) 'Z{ where Z = (Z,, Z,). The statistic T, is not the only statistic that
could be used to test (3), (5) or (7). Wu (1973,1974) proposes three other
statistics (7}, T3, T,) which all share the same numerator, Q*. Hausman (1978)
also proposes an IV form of his test statistic that is identical to a statistic
presented by Durbin (1954). Depending on the estimator used for the variance
of A\ u,, Durbin’s statistic and the IV form of Hausman’s statistic are identical
to either Wu’s T; or T, statistic. The statistics of Revankar and Hartley (1973)
and Revankar (1978) also share the numerator Q*, and are identical to Wu’s 7,
when the structural equation for y, is just-identified.® The following discussion
is in terms of the 7, test because Wu (1973,1974) gives theoretical and Monte
Carlo results indicating that 7, is to be preferred to his other statistics.
Nevertheless, because of the close relationship among these statistics, our
results hold for the other tests mentioned above as well.

3. Power properties

Except for degenerate cases, A}, £* and (1—- R} _,, ) must all be
non-zero for the model given by (1) and (2a), or by (1) and (2b). Thus from (4),
(6) and (8) we see that the null hypotheses H¥, Hj, and H, are all equivalent’
in the sense that in any particular case they are all either true or false,
depending on whether p is zero or non-zero. The same test statistic and
procedure are used for the Wu-Hausman test of each of these three null

%See Kariya and Hodoshima (1980, p. 47, eq. 3.16).

8See Nakamura and Nakamura (1981, p. 1587) and Kariya and Hoedoshima (1980, p. 47).

"Holly (1982) argues that in some cases H, and H do not imply each other. For the model
used in this paper, which is also the model treated by Durbin (1954), Wu (1973) and Hausman
(1978), however, Hy, H} and Hj, imply each other except for degenerate cases. See Nakamura and
Nakamura (1982) for a proof based on a maximum likelihood approach.
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hypotheses. For any given set of parameter values for (1) and (2a) or (2b),
the rejection rate must be the same for the tests of H¥, H{ or H,. However,
the power function for a test is the relationship between the rejecnon rate for
the test of a given null hypothesis and the size of the departure from this
null hypothesis, so it matters if we describe the power function for the Wu-
Hausman test in terms of B, § or p. Clearly the graph of the (common)
rejection rate for the Wu—Hausman tests of H¥, H, or H}, versus, say, B will
not be the same as the graph of this rejection rate versus p or 8. These
differences can be explored by considering the determinants of B, 8 and p and
the distribution of 7.

We will first consider 7,. The probability that the absolute value of T,
will exceed some critical value is an increasing function of p?, ¢? and
R; _,4.2° However, this probability does not depend directly on A;. This

can ha ectahlichad ac fallowe Fraom Wu (1073 eq. 2.10) we have b _b2=

Lall UC COlaUInIIvt as 10LUWS. D10 WU (1777, LY. £.1VU) WO uave o

C(Au;) where C=(y54,9,) W34, — (¥3A,v,) "3 A,. Also from Wu (1973,
P- 737) we have Q, = AMuj(H — C’'D 'C)u,, where H = A, —

Ay (yiAy,) A and D=(y;4,y,) ' — ()3A,p,) "' Thus we can rewrite
T, as
/‘\2u’C’1u Ay~ (ppAyy )71}71@'
14 24, A1) 1
I=c , (10)

Nul(H—C'D7'C)u

and the parameter A3 can be cancelled out of (10) just as A, cancels out of the
expression for p given in (6). Of course, the distribution of T, will still depend
indirectly on A, if the distribution of y, involves A,. Without conditions on
the coefficients of the structural equation for y,, however, A; may take on any
value for any given values of A, and A;. In fact, both the distribution of 7,

nd the reiaction rata of tha Wn I—Inncmqﬂ tegt are invariant to chaneoes in the
ana tne TEjecuion raic O1 108 yWu-—nausiiai 51 4rc invariant 10 Cianges i ine

structural equation for y, that leave the reduced form equation for y, unal-
tered. This point can perhaps be clarified with an example.

Welet Z, =(z,,,2,,), Z,=(2,1, 25, Z23), and we set a;, all the elements
of a, in (1) and all the elements of 8, and 8, in (2b) equal to 1. Thus the
model is

J’1=)’z+21,1+z1,2+}\1“1’ (]1)

£
=
o

M=ziatzist 2t 20+ 253 Auy + Asu,. (12)

By controlling the values of A;, A, and A, we can determine the values of p>

and B, and the population value of R?2 , . .,  denoted hereafter
2 Y21211021,2: 22,10 22,2: 22,3

simply by R*. Because the coefficients of the reduced form equation for y, are

#See Nakamura and Nakamura (1984a) for a proof.
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fixed in (12), by determining the value of R? we also determine the value of
R} ;4. 7, For this model we see that p* =X, /(X5 +X3), B=A\,/(3+ A%

+ /\\23), and R2 = 5/(5 + }\22 -+ I\\3} Thus for any slv'bu non-zero values for ﬁz,
R? and B we have A= /5p*(1 — R?)/R>, A, =/5(1 — p*)(1 — R*) /R and

A =(B/A,)B+ A+ A). When p>=0(and A\, =8 =B =0), A\, may take on
any non-zero value and the model is recursive.

We first choose the values of A;, A, and A; such that p> = 0.5, R? = 0.5 and
B = 0.2. Thus we have

Y=yt 2+ 2, +1.0124, (13)
and
Va=zy V2 a2y, + 255+ 255+ 1,581 + 1.581u,. (14)

Next we choose the values of the A’s so p>=0.5, R?=0.5 and B = 2. Thus:

=y, +z,,+z ,+10.120u,, (15)
and
Vo=12y 1+ 212+ 231+ 25,5+ 2,3+ 1.581u, + 1.581u, (16
The following structural equations for y, are consistent with the models
given by (13) and (14), and by (15) and (16), respectively:
y,=0610y, — 022z, ,~022z ,
+0.39z, , +0.39z, , + 0.39z, ; + 0.616u,, (17)
and

y,=0135y, - 0.73z; , — 0.73z, ,

, L

+0.865z, , + 0.865z, , + 0.865z, 5 + 1.367u,. (18)

For (13) and (17) we have A,=1.562A,, and for (15) and (18) we have
A, = 0.156\,. We could never determine these relationships empirically, though,
because (17) and (18) are underidentified. The variance of the equation
disturbance term is 100 times as large for eq. (15) as for eq. (13), and the

asymptotic OLS bias measured as a percentage of the true value of a; is 20%
for the model given by (13) and (14) and 200% for the model given by (15) and

(16). However, for both models the power of the Wu— Hausman test of HO, H,
or Hj using a critical region of 0.05 is approximately 45% for n = 20, 91% for
i1 =40 and 100% for n = 100. (These results were derived by Monte Carlo

experiments conducted in the manner described later in this section.) This is
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because the distribution of the test statistic 7, is the same for both models. It
should be recalled that the existence and identification of a structural equation
for y, is not a requirement for application of the Wu-Hausman test as this test
was originally presented by Wu and by Hausman.

Of course, even when the structural equation for y, is identified and the
relationship between A, and A, can be empirically determined, this relation-
ship is still model-specific. When the equation for y, is not derived from a
structural model for y, and y,, the distribution of 7, may not involve A, at
all. One such situation might be when the suspected correlation between y,
and u; in (1) is due to measurement errors in y,.

We will now turn our attention to the determinants of B, § and p. From (4)
we see that the magnitude (or absolute value) of B, the parameter restricted
under Hp, is an increasing function of the magnitudes of A, and p, and a
decreasing function of the magnitudes of £ and of Rf,f z.8,-7, 0 the extent
that these parameters can be varied independently.” From (8) we see that the
magnitude of 8, the parameter restricted under H,, is an increasing function of
the magnitudes of A;, § and p, but does not depend on R _ 2.4, .z, Finally
from (6) we see that p, the parameter restricted under Hj, does not depend
directly on A, §or R _, 5 5.

Nuisance parameters are parameters that are assumed to be fixed in the
sense that they take on the same values under both the null and alternative
hypotheses. If we consider p, A,, £ and R?Vz_ z,8,-7, all to be nuisance
parameters we cannot consider a power function for the Wu-Hausman test
because we cannot consider ranges of values for p, or for B and § which are
entirely determined by the nuisance parameters.

No one is suggesting that p be considered as a nuisance parameter, of
course. Rather the spirit of most of the literature on the Wu-Hausman test is
that A;, £ and Riz_ 7,8, 7, DUt not p, are to be treated as nuisance parameters
(this parameterization has not been used by others). In this case, since B and §
are linear functions of p, although the power function of the Wu—Hausman
test will have a different appearance depending on whether we describe it in
terms of B, 8 or p, these different representations of the power function will be
uniquely related for any given model. However, these relationships will depend
crucially on the values of the nuisance parameters. Also because B depends on
A, while p and the rejection rate for the Wu-Hausman test of HE, H,, or Hj
do not, the power of the Wu—Hausman test of H¥ can be low for plausible
models with large values of B. For such models, the Wu—Hausman test will
perform poorly as an indicator of the existence of an OLS bias problem.

This point can be demonstrated by Monte Carlo methods. We use the model
given by (11) and (12) in these experiments, except that we assume that the z’s

?We can vary £ while keeping R§,2,Z‘Bl .z, fixed by varying var*(Z, ). Similarly, R%z ~ 78, 7y
can be varied while keeping £ fixed by varying var*(Z,8,).
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as well as the u’s are identically distributed standard normal variables. For
convenience we assume u, and u, are independently distributed.*”

In table 1 we show rejection rates for the Wu—Hausman tests of H¥ or H{, or
H,, where all three of these null hypotheses will be rejected in exactly the same
cases. The power for the test of Hj: p =0 can be seen to rise as the values of p?
rise, with the rate of this rise depending on the value of R%.!! From table 1 we
also see that, when p? or R? are low, the power of the test of H¥: B =0 can be
quite low for fairly large values of B.

Suppose now that we do not consider A;, § and Riz, 2,8,-7, to be nuisance
parameters when testing H¥. These parameters are not explicitly restricted
under H*, but neither is p. Moreover, p, A;, ¢ and R* are all implicitly
restricted under H} since B depends on all of them. (Likewise p, A; and £ are
implicitly restricted under H.) Viewing our results in this way, we see that it is
possible to increase B without increasing the power of the Wu-Hausman test
of H}, as has been done in our experiments (see table 1). One desirable
property for a statistical test to have is that, for a fixed sample size and size of
test, the power of the test increases as the departure from the null hypothesis
increases [see Rao (1973, p. 460)]. When parameters implicitly restricted under
the null are not.considered to be nuisance parameters, the Wu-Hausman test
of H} (or H,)) does not possess this property. This problem does not arise for
the Wu-Hausman test of Hj: p =0, but this null hypothesis has not been
considered in the literature on the Wu-Hausman test.

4. Measuring the extent of a bias problem

The Wu—-Hausman test was proposed as a test for the existence of an OLS
bias problem.!? Often, however, the existence of such a problem is known or

n dealing with a related class of problems, Sawa (1969, p. 925) notes that ‘without loss of
generality we can assume the orthonormality of exogenous variables’. The variance and MSE of
the IV estimator of «; are finite for the model given by (11) and (12), although this is not a
requirement for application of the Wu—Hausman test. Normal random values for the z’s and u’s
were generated using the polar method by the subroutine GGNPM in the IMSL library. We
generated 200 sets of series for the z’s and u’s appearing in (11) and (12) for each combination of
values for n, R?, p* and B. In tables 2-4 results are shown for each pair of values of n and R?
through the first value of p? for which the power of the test is 1 in table 1. In these experiments we
are varying R2 _ z,8,-z, DYy varying R2. The parameterization of our Monte Carlo experiments is
motivated by Sawa's (;1969) parameterization of the OLS and 2SLS estimators, and by our
decompositions [given in Nakamura and Nakamura (1984a)] of the non-central parameters 8; and
8, of the doubly non-central F distribution which Kariya and Hodoshima (1980) show is the exact
distribution of the Wu-Hausman statistic for the model adopted in this paper conditional on the
values of the OLS estimates of 8, and the variance of the disturbance term. When u; and u, are
independently distributed, we have var(Aju; + Aju,) = X3 + A3,

"' By fixing the values of the coefficients of the reduced form equation for y, we also fix the
relationship between R? and R%‘Z\zlﬂl_zz. Thus we can vary R%.Z_ 7,8z, by varying R2.

128ee Wu (1973,1974) and Hausman (1978). See also Durbin (1954). Other possible uses of the
test are suggested in these papers as well.
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Table 1

Percentage rejection rates (power results) for the Wu—Hausman test of H: B=0, H,: § =0 or

Hj: p=0, using a two-tailed critical region of 0.05.2
R* B, p? n=20 n=40 n =100 n =250 n =500
02, 0, 0 6.0 5.0 5.5 4.5 45
0.2, 02, 01 6.5 9.0 14.0 45.0 74.5
02, 08, 01 6.5 8.5 19.5 49.5 72.5
02, 02, 03 8.0 19.0 57.5 95.5 100.0
0.2, 08, 03 13.0 23.5 60.0 93.0 100.0
0.2, 02, 05 13.0 40.5 86.5 100.0
02, 08, 0.5 13.0 350 86.0 100.0
02, 02, 07 28.5 71.5 99.5 100.0
02, 08, 07 26.0 67.0 99.0
0.2, 02, 09 57.0 94.5 100.0
0.2, 08, 09 53.5 94.5 100.0
0.5, 0, 0 5.5 5.5 5.5 50 4.5
05, 02, 01 7.5 20.5 455 89.0 99.5
0.5, 08, 01 8.0 17.5 47.0 89.0 99.5
0.5, 02, 03 235 575 96.5 100.0 100.0
05, 08, 03 27.5 54.0 99.5 100.0 100.0
05, 02, 05 45.0 91.5 100.0
0.5, 0.8, 05 48.0 86.5 100.0
0.5, 02, 07 70.5 98.0
0.5, 08, 07 69.0 97,0
0.5, 02, 09 90.5 100.0
0.5, 08, 09 94.5 100.0
08, 0, O 30 4.5 5.0 4.5 5.5
08, 02, 01 19.0 340 72.5 100.0 100.0
0.8, 08, 01 16.0 295 73.0 100.0 100.0
0.8, 02, 03 420 81.0 99.5
0.8, 08, 03 420 87.0 99.5
0.8, 02, 0S5 67.5 99.5 100.0
0.8, 0.8, 05 770 99.0 100.0
0.8, 02, 07 90.5 100.0
0.8, 0.8, 07 95.0 100.0
08, 02, 09 98.5
0.8, 08, 09 99.0

#The Wu-Hausman test will reject Hy, H} and Hj in exactly the same cases. The number of
repetitions in each case is 200. The length of the series.is denoted by n.
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assumed a priori.!* In such cases, it is the extent, not the existence, of an OLS
bias problem that is really in question.! In this section we consider the extent

tay which the Wu—_Hausman test 1c ahle to nick out casac where the camnle hiag
10 which the Wu-—riausman 1est 15 abi€ 10 PICK Oul ascs wicre Lic sampic bias

(B) is small. For any given model with a given value of B, there is a sampling
distribution of values for B. However, if B=0 (or is nearly zero) for some
particular data sampie, then we have a perfect (or nearly perfect) estimate of
«, no matter what the value of B is. It is the bias of the estimate, not the
estimator, that is of ultimate concern in many empirical studies. The
Wu-—Hausman test (or test statistic)'’> could be used to pick out cases where B
is small if there were high positive correlations between B and T, for samples
drawn from populations with any given values of p, A;, ¢ and R? bre Z\B, 7y
Standard practice in developing a new test is to investigate the pobulation
properties of the test, including finite sample population properties. The
property being considered in this section is a case selection, not a nnnn] tion

CiLy DIy COLSIACT AL LR SLCRE CaoC SLICCLION, 1108 201,

property.'®* Wu (1973) and Hausman (1978) make no claims concerning the
case selection properties of their test, but it is of interest to see if the test could

P PRSI, | P cimall ralioao Lo dogrn mmsonan o ) b

UC ubCU LU plbl\ Uul Cadt> WlLll Sifiail vaiucs Ul D 10U LWU 1CAdDUILS. fllbl lhe
form of the respective formulas suggests there might be a positive correlation
between B and T »- Second, a similar case selection property has been estab-
lished for another specification error test.” However, the correlations between
the absolute values of 7, and B in table 2 are all small, and are often negative
for smaller values of n. )

In table 3 we show the sample means for B for given values of n, p?, R? and
B for the cases where the Wu—Hausman (W-H) test accepts H (or H, or H})

3In fact, bias is implied by the assumed models in many applied settings. See, for example,
Boulier and Rosenzweig (1984, pp. 719, 727), Eichengreen (1984, pp. 1002, 1005), and Nakamura
and Nakamura (1984b).

YA rnold Zellner suggested in discussion with us that (b, — b,) might be directly used as a point
estimator of B = plim(b,) — &y, since b, is a consistent estimator of «, in (1) under H¥, Hy and
H{ as well as under H¥, H, and Hj. It is only under Hf, H, and Hj, however, that a
computationally tractable and consistent estimator of var(b, — b,) has been derived [see Durbin
(1954, p. 29) and Hausman (1978)].

1The Wu-Hausman test of H¥ (or Hy or Hj) is a consistent test. [See Nakamura and

Nakamura (1984a) for a nroof of the consistency of this test that does not assume local
Naxamura (1984a) Ior a proel ©f the consistency of tms test that Qoes not assume local

misspecification alternatives.] Thus for large samples, H¥ will always be rejected when B is
non-zero no matter how small B may be.

16 Notice that case selection properties are irrelevant for classical tests. If, for instance, we are
testing the null hypothesis that &, equals some specified value in (1), we only care about what this
test tells us about the population value of ;. On the other hand, in the Wu-Hausman test of H:
B = 0, we care about the value of B because B is the distance between the OLS estimate of «; and
the true value of this parameter.

7From results presented in Nakamura, Nakamura and Orcutt (1976), it can be seen that when
the sample autocorrelation coefficient for the error term of a simple regression is close to zero,
there is no ‘autocorrelation problem’ in terms of the usual testing problems resulting from the
autocorreiation of the error term, regardiess of the population vaiue of the autocorreiation
coefficient.
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Table 2

Simple correlations between the absolute sample values of the Wu—Hausman test statistic and the
absolute values of B. the deviations of the OLS estimates of «; in (11) from the true value of

a(=1)2
R2, B. p* n=20 n =40 n =100 n=250 7= 1500
02, 0, 0 ~0.07 —0.07 0.05 0.10 0.06
0.2, 02, 01 0.04 —0.03 0.04 —0.01 0.04
0.2, 08, 0.1 0.06 0.03 0.05 0.09 0.13
6.2, 02, 03 —~06.05 ~0.06 0.02 —0.61
0.2, 0.8, 03 0.01 —0.02 —-0.05 0.02
0.2, 02, 05 —0.00 —0.03 0.14
02. 08, 05 -0.15 —0.11 0.16
0.2. 02, 07 ~0.06 -0.14 ~0.05
0.2, 0.8, 0.7 -0.20 —0.04 —-0.08
02, 02, 09 —0.42 ~0.18
02, 08, 09 -0.29 ~0.39
05 0, 0 -0.07 0.09 -0.05 ~0.01 - 0.05
0.5, 02, 0.1 0.08 —0.00 0.00 —-0.02 0.03
0.5, 0.8, 0.1 —0.04 0.02 —0.02 0.07 0.02
0.5, 02, 03 0.08 0.06 —0.01
0.5, 08, 03 -0.19 —0.01 0.03
0.5, 02, 05 0.01 —0.03
0.5, 0.8, 05 —0.12 ~0.06
0.5, 02, 0.7 —-0.10 -0.20
0.5, 08. 0.7 —-0.11 ~0.19
0.5, 02, 09 -0.22 P
0.5, 0.8, 09 -0.27
08, 0, 0 -0.10 0.03 —0.03 —-0.03 0.00
0.8, 02, 0.1 —0.02 ~0.12 0.01
0.8. 08, 01 —0.01 -0.02 0.00
0.8. 02, 03 0.01 —-0.00 0.01
0.8, 0.8, 03 0.18 0.16 —~0.09
0.8, 02, 0.5 0.00 -0.08
0.8, 08, 05 —0.06 -001
0.8, 02, 0.7 -0.05
0.8, 0.8 0.7 —0.09
0.8, 02, 09 -0.12
0.8, 0.8, 09 —0.16

#See footnote to table 1.
P Results are only shown through the first pair of values of R? and p’ (for the given value of n)
for which the power of the test is found to be one in table 1.

and the cases where H (or H, or Hj) is rejected using a two-tailed critical
region of 0.05. The sample means for B for the cases where H¥ is accepted rise
and fall with the true values of B in the saine way as for the cases where H is

rejected. For any given non-zero values of p?, R? and B, what we would like to
have found is

E( B[W-H tests accepts H¥) = 0, (19)
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Table 3

Mean sample biases for OLS estimator of «, in (11) for cases where H¥: B =0 was accepted and

cases where HZ: B = 0 was rejected.?

HY: B =0 accepted H{: B =0 rejected
R: B, o> n=20n=40 n=100 n=250 n=500 n=20 n=40 n=100 n =250 n=500
0.2, O, 0 —-000 —-0.00 0.00 0.00 000 002 -001 -0.00 0.00 0.00
02, 02, 01 019 021 0.20 0.20 019 025 0.17 020 0.19 0.20
02, 08, 01 085 084 080 0.78 0.79 0.67 0.76 0.82 081 0.83
02, 02, 03 021 020 020 0.20 0.21 0.19 020 0.20
02, 08, 03 082 081 0380 0.76 0.84 0.81 0.80 0.81
0.2, 02, 05 020 020 0.20 0.20 0.20 020
0.2, 0.8, 05 082 08 0.77 0.73 0.77 0.79
0.2, 02, 07 019 021 021 0.19 0.20 0.20
0.2, 08, 07 0.80 080 0380 0.76 0.80  0.80
02, 02, 09 021 021 0.19 0.20
02, 08, 09 083 087 0.78 0.79
05, 0, 0 -—-0.00 -000 0.00 0.00 0.00 0.03 001 -0.00 0.00 0.00
0.5, 02, 01 019 020 0.21 0.20 0.20 0.21 0.21 020 020 0.19
0.5, 08, 01 081 078 0.83 0.74 1.14 0.55 0.71 0.85  0.80 0.82
0.5, 02, 03 019 020 021 0.24 0.21 0.20
05 08 03 083 080 0.83 0.68 0.77 0.82
05 02, 05 020 02 0.20 0.20
0.5, 08, 05 083 080 0.77 0.78
0.5, 02, 07 020 025 0.20 0.19
0.5, 08, 0.7 083 078 0.80 0.78
0.5 02, 09 023 0.19
0.5 08, 09 095 0.79
08, 0, 0 -000 001 -000 0.00 000 -001 -0.02 -0.00 —000 -0.00
0.8, 0.2, 01 023 020 022 013 0.17 0.21
08, 08, 01 08 069 077 1.19 0.68 0.83
0.8, 0.2, 03 020 022 027 0.18 020 020
08, 08, 03 080 078 096 0.76 0.85 0.81
08, 062, 05 018 021 0.19 0.20
0.8, 08, 05 079 037 0.82 0.80
0.8, 02, 07 020 0.21
0.8, 0.8, 0.7 1.06 0.81
0.8, 0.2, 09 0.23 0.19
0.8, 08, 09 113 0.78
2See footnote a to table 1 and footnote b to table 2.
or, at least,
E( B|W-H test accepts H¥ ) < E( B|W-H test rejects HZ). (20)

=
[+ 13

W-H test accepts HZ ) = E( B|W-H test rejects H} ) = E( B).

(21)
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The results in tables 2 and 3 show that neither the Wu-Hausman test nor 7,
can be used to pick out estimated models where B is close to zero.

5. Use of the Wu—Hausman test as a pretest

One reason for concern about OLS bias is that it leads to Type I errors that
are larger than the stated size for the usual test of significance for the
coefficient of the included endogenous variable. In- this section we consider
whether this testing problem can be alleviated by basing the test of significance
for the coefficient of the included endogenous variable on the OLS estimation
results when H¥ (or H, or Hj) is accepted by the Wu-Hausman test and on
the IV estimation results otherwise.'®

We use the term MIXED to indicate that OLS or IV estimation is used,

respectively, depending on whether the Wu-Hausman test with a two-tailed

P very, LlpLaadiil £ Vi1 WiCRIilr U0 VY Lrausilial Ywitdd @ LvvUT @t

five-percent critical region accepts or rejects H¥. In table 4 we compare the
observed proportions (or probabilities) of Type I errors for the OLS, IV and

RATITITY TY 2, Y

MIXED method t-tests of HY: a; =1 versus HY: a; # 1 using a two-tailed
five-percent critical region, where one is the true value of a;. For non-zero
values of p, as n increases the probability of a Type I error tends toward
hundred percent for OLS and toward the specified level of five percent for IV.
The probabilities of a Type I error reported in table 4 for the MIXED method
are always smaller than for OLS, but are still large. The advantage of IV over
the MIXED method in this respect is large even for values of p quite close to
zero, until # becomes large enough that IV is used virtually all the time in the
MIXED method. For instance, when n = 100, R2=0, 2, and n2 =01 (hence

p = 0.316), the probabilities of a Type 1 error are 5 percent for IV, 87.5 percent
for OLS, and 74.5 percent for the MIXED method.
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