
 Testing for Relationships Between Time Series

 ALICE ORCUTT NAKAMURA, MASAO NAKAMURA and GUY H. ORCUTT*

 The usual procedures for testing the significance of sample correla-

 tions between pairs of independently normally distributed series are

 not appropriate for testing sample correlations between pairs of

 autocorrelated series. We present sampling evidence supporting

 our hypothesis that the distributions of sample correlations between

 pairs of unrelated first-order Markov series conditional on the first

 lag sample autocorrelations of the series correlated are independent

 of the population first lag autocorrelations of these series. Based on

 this evidence, a new test of significance for correlations between

 autocorrelated series is proposed, which, although treating them as

 first-order Markov series, does not depend on the generally un-

 known generating properties of the series.

 1. INTRODUCTION

 Two related null hypotheses have been widely used by
 researchers in testing for significant relationships between

 pairs of time series:

 I. Ho: ,B = 0 in the model Y = c + fAX + e, where the X
 series is assumed to be fixed, the disturbance term e is in-

 dependent of X, and, in particular, e and, therefore, Y are
 assumed to be independently and normally distributed.

 II. Ho: pxy = 0 where p denotes the zero-order cross-correla-
 tion between two independently, normally distributed series
 X and Y.

 The statistic used to test Hypothesis I is exactly the

 same t quantity that is commonly used to test Hypothesis

 II. Also it has been shown in [18, pp. 25-33] that even
 if both X and Y are assumed to be randomly, normally

 distributed in Hypothesis I, the usual t-test for this hy-
 pothesis is still appropriate. There is evidence, too, that

 the usual tests will frequently yield reasonable results

 even when the series correlated are drawings from non-

 normal populations (see [12]). There is, however, one

 point at which these tests of significance for Hypotheses I

 and II clearly break down. Economic time series are

 usually autocorrelated, and ever since the article by Yule

 [34], it has been clear that higher correlations are to be

 expected by chance between unrelated autocorrelated

 series than between unrelated series which are inde-

 pendently distributed.
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 2. EVALUATING THE SIGNIFICANCE OF RELATION-

 SHIPS BETWEEN AUTOCORRELATED
 TIME SERIES

 The problem of testing the significance of observed

 relationships between autocorrelated time series has been

 approached in various ways. For purposes of discussion
 we will categorize these approaches as

 1. Spacing or selection of observations used.

 2. Trend removal.

 3. Autoregressive transformation, or differencing.

 4. Direct evaluation.

 The first three approaches are aimed at removing

 whatever autocorrelation is present from at least one of

 the series to be correlated. Approach 1 includes not only
 the practice of simply dropping out observations from

 the series of interest, but also the more sophisticated exact
 tests of significance for correlations between time series
 which have been developed (see [14, 15 and 26]). The
 main difficulty with these exact tests, as well as with

 simple spacing, is that not all the information in the

 original data is used, with a consequent reduction of

 degrees of freedom.' Among the difficulties associated
 with Approach 2 is the fact that trend-corrected data are

 not generally independently distributed (see [1, 11]).
 Approach 3 involves choosing an appropriate autoregres-
 sive transformation. The practical difficulties involved in
 making this choice are well-known (see [5, 19, 20, 30,
 32]). Another difficulty, however, is that when we test

 for the significance of a linear relationship between, say,
 the first differences of two series, we are not testing

 exactly the same hypothesis as when we test for a linear
 relation between the two series themselves.2

 1 In [15], Hannan obtained an exact test of correlation between two series which
 can be applied whenever one of the two series is Markovian. However, for a Markov
 process of order h, only n(h + 1)-i observations will be used in the correlation
 where n is the number of observations available. The remainder of the observations
 are used to reduce the series to independence in time. Also, as Hannan notes [15, p.
 320], "When pi $ p2 the exact test of significance of the correlation between the
 two series there given is still an exact test, but the conclusions as to the power of
 this test and the others there considered, when Xt also comes from a Markov
 process, do not follow...."

 2 A simple example may help to illustrate this point. Arbitrarily draw any two
 smooth curves. Divide each of these into N equal segments. On the vertical division
 lines between these segments, mark off for Curve 1 points alternately one unit
 above and one unit below the curve. Repeat with Curve 2. The two new curves may
 obviously be made to have highly positively correlated first differences. However,
 as is evident from the manner of construction, the original values of these new series
 may have zero or even a negative correlation. Another difficulty is that when an
 autoregressive transformation is performed on actual economic time series, random
 measurement error variances will likely be amplified relative to the phenomena
 under study.
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 The last approach is the only one aimed at directly

 testing the significance of observed relationships between

 autocorrelated time series, and most of this work has been
 focused on developing a test of significance for the more

 general null hypothesis (see [2, 3, 4, 17, 29, 31]):

 III. Ho: px Y = 0, where both X and Y are assumed to be
 autocorrelated.

 Spectral analysis in [13, 24] represents one procedure
 which can be used for investigating and testing Hy-

 pothesis III. Basic questions have been raised, however,
 about the suitability of spectral methods to economic

 data and problems in [24, p. 340, and 33, p. 33].3 Our
 work is aimed at developing a procedure for testing the

 significance of correlations between autocorrelated time

 series which is better suited to the data and problems of
 economists.

 3. THE NULL DISTRIBUTION OF CORRELATIONS
 BETWEEN PAIRS OF FIRST ORDER

 MARKOV SERIES

 McGregor [21] and McGregor and Bielenstein [22]
 have worked out approximate distributions for sample

 correlations between pairs of stationary first-order

 Markov series with both known and fitted means. Like

 Bartlett's large-sample variance approximations [2],
 these approximate distributions depend only on the

 length of the series correlated and the product of their

 first-lag population autocorrelations. An approximate

 density function of the type McGregor has derived could

 be numerically integrated to determine significance levels

 for sample correlations between stationary first-order

 Markov series. As one step in our exploration, wre chose

 alternatively to approximate these significance levels

 using the Monte Carlo approach.

 Our generating relationships were of the form

 Xt = p1Xt-1 + ut and Yt = P2Yt-1 + Vt, (3.1)

 where u and v were generated by two Chen random

 normal number generators.4 Both u and v have a mean of

 3 Although spectral techniques can be advantageously used in analyzing certain
 time series, the following questions have been raised with respect to economic ap-
 plications: (1) the amount of data (the number of items in a series) required before
 it becomes sensible to attempt to estimate a spectrum would seem to be greater than
 100, which would form an important barrier to analyzing annual economic time
 series, particularly when the mean of the generating process must be estimated from
 the available data (see [24, 25]); (2) spectral and time domain (regression) methods
 are mathematically equivalent only if an observed time series is assumed to be
 identically zero outside the observation interval, which means that in spectral
 analysis emphasis is distributed equally over the entire observation interval, while
 in economic time series analysis a tangible point of the argument is that a good fore-
 cast is not made by assuming that the time series is zero outside the observation
 interval (see [33]); and (3) spectral methods are not attractive in the coordination
 between statistical and subject matter knowledge, since it is well-known that the
 spectral components defined by specific bands of the spectrum often do not lend
 themselves to a subject-matter interpretation (see [33]).

 4 See Chen [7, 8]. The initial values used for the starting integers were 748511649
 and 147303541 for the u series and 180810529 and 536841077 for the v series.
 Satisfactory statistical properties are reported for random numbers generated using
 these initial numbers in Chen [7, 8]. The computer used was the IBM System/360
 model 67 at the University of Alberta Computing Center.

 zero and a standard deviation of 25.5 We set the initial
 values of X and Y in (3.1) equal to zero, and then gen-
 erated pairs of long series of 600,000 items each for the
 following values of P1 and P2: (-.9, -.9), (-.7, -.7),
 (-.5, -.5), (-.3, -.3), (-.1, -.1), (0, 0), (.1, .1),
 (.3, .3), (.5, .5), (.7, .7) and (.9, .9). To minimize the effect
 of the initial values used in generating u and v, the first
 30 items generated in each of these long series were dis-
 carded. Also, every other subsequent group of 30 items
 generated was discarded, leaving 10,000 paired subseries
 of length 30 for each pair of values of Pi and P2. For each
 of these pairs of subseries, the Pearson product moment
 correlation coefficient was calculated. The resulting
 10,000 sample correlation coefficients for each pair of
 values of Pi and P2 were then ordered according tQ their
 absolute values, and two-tail significance levels of .01, .02,
 .05 and .10 were calculated for each group. Our results
 for Pi = P2 = +.9, -t.5 and 0 are shown in Table 1,
 along with Fisher's significance levels [10] for the case
 where p1 = P2 = 0, as a check on our computational pro-
 cedures. (Significance levels for P1 = P2 = 4.7, +t.3 and
 +.1 were calculated but are not shown.)6

 In the absence of further information concerning
 factors which affect the probability of obtaining chance
 correlations between unrelated autocorrelated series, we
 might accept our Monte Carlo results shown in Table 1,
 or McGregor's analytic expressions, as a basis for a
 revised null test for correlations between autocorrelated
 economic time series. However, in 1948 Orcutt and James
 [29] found evidence that the conditional variances of
 sample correlations between pairs of unrelated autocor-
 related series, given their first-lag sample autocorrela-
 tions, seem to vary systematically with the product of
 the values of these sample autocorrelations.

 5 The results of our paper would have been identical regardless of the variances
 chosen for the disturbance terms.

 Let Xt = pXt-, + ut(t = 2, 3, 4, ) and X1 = ul (hence, Xo = 0), where ul
 U2, U3, -.. are independently and normally distributed with mean 0 and standard
 deviation k (k > 0). Then X1 = U1 and

 t

 Xt= z pt-?ui for t > 2

 Suppose we generate Z1, Z2, Z3, *-- which are independently and normally dis-
 tributed with mean zero and standard deviation one. We can now generate the
 Xt-process by using ui = kZi (i = 1, 2, ** ). Thus, we have

 t

 Xt = k pti-Zi(t > 2) and X1 = kZ.

 From this it follows that the estimated first-order autocorrelations (denoted by ri
 and r2 in our paper) and the estimated zero-order cross-correlations (denoted by r
 in our paper) should be identical for all values of the variances of the disturbance

 terms for our generating process, since
 t t

 Xt= pt-zi, Yt = z pt-Zi, Xt' = kXt, and Yt' = Yt,

 and, therefore,

 r (kXt - kXt)(kXt_- kXti_) k2 z (Xt - Xt)(Xt_l - Xt_)
 rlx' = =_ = rix

 z (kXt_l - kXti_)2 k2 z (Xt_l - Xt_1)2

 and

 r (kXt - kXt)((tt - Yt) kt z (Xt - Xt)(Yt - Yt)
 rxwY = = = rxy.

 kt (nsxsy) k4t(nsxsy)

 6 The nonsymmetry about zero which is shown in Table 1 for pi = p2 = .9 and

 pl = p2 = - .9 was also observed for P1 = p2 = .7 and pi = p2 = - .7. This non-
 symmetry is due to the dependence, established in 5ections 4, 5 and 6, of the dis-
 tribution of the sample correlation coefficient on the first-lag sample autocorrelations
 of the series correlated.
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 1. Critical Points for Correlations Between Series of
 Length 30, Given the Population First-Lag

 Autocorrelations of These Series

 Level of significance for two-tailed test
 P1 = P2

 .10 .05 .02 .01

 -.9 .70 .77 .84 .86
 -.5 .38 .44 .51 .55
 0 .31 .36 .42 .47
 .5 .38 .44 .51 .56
 .9 .63 .71 .77 .81

 Fisher's approximation for series of length 27

 0 .3233 .3809 .4451 .4869

 Fisher's approximation for series of length 32

 0 .2960 .3494 .4093 .4487

 4. EVIDENCE OF THE IMPORTANCE OF THE
 SAMPLE AUTOCORRELATIONS

 Our generated series were used to carry out a test of the
 Orcutt-James hypothesis that the conditional variances
 of correlations between pairs of unrelated, autocorrelated
 series, given the first-lag sample autocorrelations of these
 series, are independent of the population first-lag autocor-
 relations of the series correlated.7

 For each of our subseries of length 30, the autoregres-
 sive parameter was estimated using least squares regres-
 sion, 8 and the Pearson product moment correlation
 coefficient was calculated for each pair of subseries.

 Each of our 11 sets of 10,000 sample correlation coeffi-

 cients corresponding to specified values for P1 and P2 was
 then cross-classified according to the respective values of

 the sample autocorrelation coefficients, ri and r2, of the
 subseries used to compute each of the sample correla-
 tions. (In carrying out this classification we did not dis-

 7 Orcutt and James worked with series generated by the model

 Yt+i = Ye + 0.3(Yt - Yi-1) + et+,I

 where the random elements used, the et+1, were two digit numbers drawn from a
 population having a rectangular distribution and a range of -49 through zero to 49.

 8 Since, in practice, one would have no way of knowing the true value of the
 constant term, we estimated a constant term along with the autoregressive
 parameter.

 As to our choice of an estimator for the autoregressive parameter, Copas [9] has
 compared by Monte Carlo methods the performance for estimation in a stable
 Markov time series with unknown mean of a "mean likelihood" estimator, the
 first sample serial correlation coefficient, the first sample serial correlation coefficient
 bias corrected, and the least squares estimator. The "mean likelihood" estimator
 and the least squares estimator were found to perform almost equally well in terms
 of the mean squared error when the results were averaged over, = -0.9 (0.1)0.9,
 where 68 denotes the true autoregressive parameter, and to provide better results
 than the other two estimators. Looking at the results for the individual values of 6,
 the "mean likelihood" estimator was found to give the least mean squared error for
 the approximate range [-0.3, +0.6], the correlation coefficient for true values of
 ,6 < -0.3, and the least squares estimator for true values of 68 > 0.6. These results
 are claimed to be valid for series of length 10 and 20, and accurate to approximately
 two decimal places. Because we are primarily interested in true values of the auto-
 regressive parameter greater than 0.6, and because the least squares estimator is
 the most familiar to economists, we have chosen to base our study on this estimator.
 It should be noted, however, that we are not chiefly concerned with accurately
 estimating the true autoregressive parameter. We are rather trying to uncover a
 stable dependence of the distribution of the sample correlation coefficient on ob-
 servable sample autoregressive properties of the series correlated. How well other
 estimators of the autoregressive parameter would perform in terms of this objective
 is not known.

 tinguish between (r1, r2) and (r2, ri).) The conditional
 variance of the sample correlations was calculated for
 each cell.9

 Intervals of 0.1 were used in grouping the subseries ac-
 cording to their sample autocorrelation coefficients,

 except for sample autocorrelation coefficients ranging
 between -0.10 and +0.10. Intervals of 0.025 were used

 to group the series with sample autocorrelation coeffi-
 cients falling in this range.

 We next tested the hypothesis that the observed vari-
 ances of the sample correlations corresponding to any
 given cell in our two-way classification can be regarded as

 drawings from a single population. For instance, for the

 cell corresponding to 0.1 < ri < 0.2 and -0.2 < r2
 < -0.1 or 0.1 < r2 < 0.2 and -0.2 < ri < -0.1, we
 tested the hypothesis that the sample correlations falling
 in this cell and corresponding to values of the generating

 autoregressive parameters of (-.7, -.7), (-.5, -.5),

 (-.3, -.3), (-.1, -.1), (0, 0), (.1, .1), (.3, .3), (.5, .5)

 and (.7, .7) can all be regarded as drawings from the same
 population.10

 For each cell in our two-way classification containing

 sample correlations corresponding to two or more pairs
 of values of generating parameters, and more sample cor-
 relations than the number of pairs of corresponding gen-

 erating parameters, we performed a simple one-way
 analysis of variance. For each cell the null hypothesis is

 Ho: P1,k2 = = P11k , (4.1)

 where Pi,k denotes the population correlation coefficient

 for the sample correlations in the kth cell in our two-way
 classification, and corresponding to the ith pair of gen-
 erating parameters Pi and P2 in (3.1).

 Since intuition as well as a t-test confirm that

 E(rjri, r2, P1, P2) = E(rjri, r2) = E(r) = 0

 where r denotes the sample correlation coefficient,

 r2 = E r2/n = E [r-E(r)]2/n

 is an unbiased estimate of the variance of r. Thus, testing

 our null hypothesis Ho is equivalent to testing the hy-
 pothesis that the sample correlations in any given cell of
 our two-way classification all have the same correspond-
 ing population conditional variances.

 Out of 258 F-ratios, 13 or approximately 5.03 percent
 are significant at a 5-percent critical level, and five or
 approximately 1.93 percent are significant at a one-
 percent critical level. Thus, we feel that the hypothesis
 that the observed variances of sample correlations cor-
 responding to any given cell in our two-way classification

 9 More precisely, the conditional variance referred to here is

 r2= ( r2)/ number of elements in R,
 R

 where R? is an index set over which the sum is taken. In this case, R? is defined in
 terms of a cell in our two-way classification.

 10 No observations from the sets of r2's with the generating autoregressive parame-
 ters of (-.9, - .9) and (.9, .9) fell in this particular cell. In general, for any given

 cell kc, some of the rX2 i = 1, ** *, 11, may not exist.
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 can be regarded as drawings from a single population is
 supported."

 5. AUTOREGRESSIVE INFORMATION CONTAINED

 IN THE PRODUCT AND SIGNS OF ri AND r2

 The existence of a dependence of the conditional vari-
 ances of sample correlations between unrelated autocor-
 related series on the product of the associated first-lag
 sample autocorrelations is clearly demonstrated in Figure
 A. The observations in this figure are again based on our
 sets of pairs of subseries of length 30 constructed ac-
 cording to (3.1).

 Each of our 11 sets of 10,000 r2's was ordered by ar-
 ranging the corresponding values of the product of the
 sample autoregressive coefficients from largest to smallest.
 Using this ordering, each set was divided into ten groups
 of 1,000 correlations each the first group corresponding
 to the 1,000 largest values of the product rir2 for that set,
 the second group to the next 1,000 values of rjr2, etc. For
 each group we calculated

 r1r2 = E rir2/1000 , = -2/1000 and
 0(r22 = (1/999){ E r4 - (1/1000) ( r2)2}

 Each of these groups of 1,000 r2's is a subset of one of our

 11 original samples of r2's. Thus, r2 now stands for the
 variance of the correlation coefficients in each group, con-
 ditional on the mean value of the products of the sample
 autocorrelation coefficients, as well as on the population
 autocorrelations. In Figure A we have plotted and con-

 nected the resulting ten pairs of values of r2 and rir2 for
 each of the following pairs of values of Pi and P2: (-.9,
 -.9), (-.7, -.7), (-.5, -.5), (-.3, -.3), (.3, .3),
 (.5,.5), (.7, .7), (.9, .9).

 This figure shows clearly that the conditional variances
 of the sample correlations generated in this study are, in
 fact, dependent on the corresponding values of the prod-
 uct of the sample autoregressive coefficients. There are,
 however, small but systematic differences between those
 line segments corresponding to positive and negative pairs
 of values of the generating autoregressive parameters.

 6. SIMPLE AND MODIFIED PRODUCT
 CLASSI FICATIONS

 These systematic differences noted in Figure A were
 verified by an analysis of variance test. We grouped all
 our sample correlation coefficients according only to the
 values of the products of the sample autoregressive co-
 efficients for the subseries yielding these correlations,
 using the same intervals as in Section 4. We then tested
 Hypothesis (4.1), where k now denotes the cell in our
 simple product classification. Out of 19 F-ratios, ten or
 approximately 52.6 percent are significant at a 5-percent
 critical level, and eight or approximately 42.1 percent are
 significant at a one-percent critical level. Thus, the hy-

 11 Distributions of the sample correlation coefficient conditional on various other
 sample properties of the series correlated may also display this property.

 A. A Demonstration of the Dependence of r2 on r1r2

 r2

 0.36

 0.32

 0.28 -

 0.24 -

 0.20 -

 0.16

 0.12 -

 0.08

 P* I,P2"2>0
 o D P1,P2 <0

 0.04

 - 0.40 0 0.40 0.80

 P1 P2

 pothesis must be rejected that the sample correlations
 corresponding to each cell in our simple product classifica-
 tion are drawings from a single population.

 We next grouped our sample correlation coefficients by
 the values of the products of the sample autoregressive
 coefficients for the subseries yielding these correlations,
 with a distinction being made between r1, r2 > 0 and
 r1, r2 < 0. We again tested Hypothesis (4.1), where k now
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 denotes a cell in our modified product classification.
 These F-ratios are shown in Table 2. Out of 29 F-ratios,
 two, or approximately 6.9 percent are significant at a
 5-percent critical level, and zero are significant at a one-
 percent level. Thus, using this modified product classifi-
 cation, we feel that the hypothesis is supported that the
 distributions of sample correlations between unrelated
 first-order AMarkov series conditional on the values of the
 product and signs of the sample first-lag autocorrelations
 of the series correlated are independent of the population
 first-lag autocorrelations of these series.

 2. F-Tests for Modified Product Classification

 Degrees of Degrees of
 Cell F-Ratio freedom freedom

 between within

 -.2 to -.1 .813 7 346
 -.1 to-.075 1.318 8 466
 -.075 to .050 .466 8 1169
 -.050 to -.025 .450 8 3053
 -.025 to 0 .368 8 11165

 rl, r2 > 0

 0 to .025 .470 7 6511
 .025 to .050 .654 7 3364
 .050 to .075 .836 6 2520
 .075 to .1 .804 6 2173
 .1 to.2 .330 6 6895
 .2 to .3 .881 4 5323
 .3 to .4 1.215 3 4678
 .4 to .5 .279 3 4003
 .5 to .6 3.327 a 2 3512
 .6 to .7 1.118 2 2734
 .7 to .8 .054 1 1681
 .8 to .9

 .9 to 1.0 .052 1 40

 rl, r2 < 0

 0 to .025 .466 7 7273
 .025 to .050 2.072 6 3683
 .050 to .075 1.887 5 2742
 .075 to .1 1.293 6 2338
 .1 to.2 .884 6 6786
 .2 to .3 2.364 4 5183
 .3 to .4 .515 3 4521
 .4 to .5 .952 3 3837
 .5 to .6 1.048 2 3517
 .6 to .7 .588 2 3087
 .7 to .8 4.989a 1 3325
 .8 to .9 2.426 1 2782

 aSignificant at the five-percent level.

 Having established our hypothesis for the 45-degree
 line -1 < P1 = P2 < 1, we next explored the parameter
 rectangle 0 < P1, P2 < 1. Twenty-one sets of 1,000 pairs
 of subseries of length 30 were generated by the procedure
 described in Section 3, using the parameter combinations

 (9, 9), (-9, 7), (-9, .5), (.9, .3), (.9, .1), (.9, O), (.7, .7),
 (7, .5), (.7, .3), (.7, .1,), (.7, O), (.5, .5), (.5, .3), (.5, .1),
 (.5, 0), (.3, .3), (.3, .1), (.3, 0) (.1, .1), (.1, 0), and (0, 0).
 As before, analysis of variance was used to test the hy-
 pothesis that the sample correlations in any given cell in
 our modified product classification all have the same
 population conditional variance, regardless of the true

 values of P1 and P2. Out of 25 F-ratios, one, or approxi-
 mately 4 percent, are significant at a 5-percent critical

 level and zero are significant at a one-percent critical

 level. Thus, we feel that our hypothesis is supported for

 the entire parameter region - 1 < P1, p2 < 1 that the

 distributions of sample correlations between unrelated
 first-order Markov series, conditional on the values of the

 product and signs of the sample first-lag autocorrelations

 of the series correlated, are independent of the population
 first-lag autocorrelations of these series.

 7. A SUMMARY OF OUR FINDINGS

 Thus, to summarize our findings,'2 let

 p (r I ri, r2, P1, P2) = p (r, ri, r2 P P1, P2)/p (ri, r2 I P1, P2) (7.1)

 denote the distribution of the sample correlation co-
 efficient r conditional on the sample first-lag autocorrela-

 tions ri, r2 and the population autocorrelations P1, P2
 (and implicitly on p = 0, i.e., o-., = 0). The conventional
 tests of significance for r rely on

 p(rlpi, P2) = f|p(r, ri, r2Ipi, p2)dri, dr2, (7.2)

 and it appears from Bartlett's and McGregor's work that

 p (r Ipi, P2) _ p(r| IP1P2) * (7.3)

 We note that (7.1) is more informative than (7.2). In
 particular, Monte Carlo evidence is presented supporting
 the hypothesis that

 V(rIri, r2, P1, P2) = V(rIrir2, sign (r1), sign (r2)) , (7.4)

 and on the basis of this evidence we conjecture that

 p (r I ri, r2, P1, P2) = p (r I ri, r2)

 - p(rIr1r2, sign (r1), sign (r2)) . (7.5)

 Monte Carlo tabulation of (7.5) is presented in Section 8.

 8. A NEW TEST OF SIGNIFICANCE FOR
 CORRELATIONS BETWEEN TIME SERIES

 OF THIRTY OBSERVATIONS

 On the basis of our findings in Section 6 we have pro-
 ceeded to use Monte Carlo methods to approximate sig-
 nificance levels for correlations between autocorrelated
 time series of length 30, with given first-lag sample auto-
 correlations, and which can be viewed as drawings from
 first-order AMarkov processes. Our observed sample cor-
 relations for all 11 of our sets of 10,000 correlations were
 grouped according to the product of the first-lag sample
 autocorrelations of the subseries correlated, with a dis-
 tinction being made between correlations corresponding
 to ri, r2 > 0 and those corresponding to rl, r2 < 0. This
 is the modified product classification used in Section 6.

 The observed sample correlations in each group con-
 taining 100 or more observations were then ordered from

 12 This formalization of our findings was suggested to us by Arthur 5. Goldberger.
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 smallest to largest according to their absolute values, and

 two-tail significance levels of .10, .05, .02 and .01 were
 calculated for each group. Our results are shown in
 Table 3.

 3. Critical Points for Correlations Between Series of
 Length 30, Given the First-Lag Sample

 Autocorrelations of These Series

 Level of significance for
 Class two-tailed test Number of
 intervals observations

 for rjr2 .10 .05 .02 .01

 -.2 to-.1 .30 .35 .40 .42 354
 -.1 to -.075 .27 .32 .39 .40 475
 -.075 to -.050 .28 .34 .41 .43 1178
 -.050 to -.025 .30 .36 .41 .44 3062
 -.025 to 0 .30 .36 .43 .47 11174

 rl,r2 > 0

 0 to .025 .31 .36 .43 .47 6519
 .025 to .050 .32 .38 .46 .49 3372
 .050 to .075 .34 .39 .46 .49 2527
 .075 to .1 .34 .39 .46 .50 2180
 .1 to.2 .36 .42 .48 .54 6902
 .2 to .3 .40 .46 .53 .58 5328
 .3 to .4 .45 .51 .57 .61 4682
 .4 to .5 .50 .57 .63 .67 4007
 .5 to .6 .57 .63 .70 .74 3515
 .6 to .7 .65 .71 .76 .78 2737
 .7 to .8 .72 .77 .82 .84 1683
 .8 to .9 .78 .84 .88 .90 508

 rl, r2 < 0

 0 to 0.25 .30 .36 .42 .45 7281
 .025 to .050 .31 .36 .42 .47 3690
 .050 to .075 .32 .38 .44 .48 2748
 .075 to.1 .32 .38 .44 .49 2345
 .1 to.2 .34 .40 .46 .50 6793
 .2 to .3 .38 .44 .50 .54 5188
 .3 to .4 .41 .47 .54 .58 4525
 .4 to .5 .46 .52 .58 .62 3841
 .5 to .6 .52 .58 .64 .67 3520
 .6 to .7 .57 .63 .69 .73 3090
 .7 to .8 .66 .72 .78 .81 3327
 .8 to .9 .78 .81 .85 .87 2784
 .9 to 1.0 .86 .88 .90 .92 600

 Of course, a test which is only applicable for series of
 length 30 would be of limited usefulness. Thus, 30 more
 samples of 1,000 pairs of subseries of length 130 were now
 generated by the procedure described in Section 3, using
 the parameter combinations of (1.0, 1.0), (1.0, .9),
 (1.0, .7), (1.0, .5), (1.0, .3), (.9,.9), (.9, .7), (.9, .5),
 (.7,.3), (.7, .1), (-1.0, -1.0), (-1.0, -.9), (-1.0, -.7),

 (-1.0, - .5), (-1.0, - .3), (-.9, - .9), (- .9, - .7),
 (-.9, - .5), (-.7, -.3), (-.7, -.1), (1.0, -1.0), (1.0,

 -.9), (1.0, -.7), (1.0, -.5), (1.0, -.3), (.9, -.9), (.9,
 -.7), (.9, -.5), (.7, -.3), and (.7, -.1). For the first 5,
 10, 15, 20, 25, 30, 40, 60 and 120 items in each pair of
 subseries, the Pearson product moment correlation co-
 efficient was calculated, and the autoregressive parameter
 was estimated as before for each of the subseries cor-

 related. We next classified our 30,000 values of the cor-

 relation coefficient, r, for each value of n according to the
 product of the estimated first-lag autoregressive parame-

 ters r1r2, with a distinction being made between r-1, r2 > 0

 and ri, r2 < 0. As before, intervals of 0.1 were used,
 except between -0210 and +0.10, where intervals of

 0.025 were used.

 For each cell containing at least 50 observations in our

 modified product classification for each value of n, the

 values of r were ordered according to their absolute values

 from smallest to largest, and critical values of r were
 calculated for two-tailed significance levels of .10, .05,

 .02 and .01. Due to an improved choice of values for pi
 and P2, we were able to calculate these critical values of r

 for all cells in our modified product classification, such

 that -1.0 < r1, r2 < 1.0, for n = 5, 10, 15, 20, 25, 30,

 40, 60 and 120. The critical values of r for a two-tailed

 significance level of .05 are shown in Figure B for n = 5,
 10, 20, 30, 40, 60 and 120.

 B. Critical Points for Correlations Between Series of

 Lengths 5, 10, 20, 30, 40, 60, and 120, Given the

 First Lag Sample Autocorrelations of These

 Series for rl, r2> 0 and a .05

 1.0 5

 0.9

 0.8 - 10/ / /1

 0.7

 0.6 -

 0.4

 0.3

 0.2-

 0. 1

 0 0.2 0.4 0.6 0.8 1.0

 rl r2

 Based on these calculations, a small FORTRAN program

 has been developed for calculating and testing the sig-

 nificance of correlations between autocorrelated time
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 series. The program is applicable for 20 < n < 120 and

 -1.0 < rl, r2 < 1.O.'3
 It is reassuring to note that these new critical values of

 r for the two-tailed significance levels of .10, .05, .02 and

 .01 for n = 30 are virtually identical to the values pre-

 sented in Table 3 for all areas of overlap, except for

 -0.10 < rlr2 < 0.10, where the results are seen to be
 somewhat unstable. This is further evidence that relation-

 ship (7.5) is true, and that a reliable testing procedure has

 been developed.

 Questions have been raised as to whether the tables
 which we have developed might have been more cheaply

 derived without resorting to the M\lonte Carlo method.

 In particular, it has been pointed out that Hannan [16,

 p. 368] suggests that a satisfactory procedure for testing
 the significance of correlations between autocorrelated
 time series "should be to use r as an ordinary correlation

 from N(1 - plp2)/(l + P1P2) observations. (Of course,
 P1 and p2 would need to be estimated from the data and
 mean corrections would have to be made.)" This ap-

 proach is suggested by the form of McGregor's [21] and

 McGregor and Bielenstein's [22] approximations of the
 distributions of sample correlations between pairs of

 stationary first-order Markov series with known and
 fitted means, and by the fact that the variance of these

 distributions is near to (1 + plp2)/n(1 - P1P2). As
 Hannan notes, this procedure was suggested by Bartlett
 in 1935. Tables facilitating the application of this pro-

 cedure for 10 < n < 100 and .1 < r1r2 < .9 were also
 presented by Orcutt [28] at a meeting of the American

 Statistical Association in 1949. The estimator used for Pi
 in Orcutt's paper is

 ri' = 1 - (')Qi2/82)

 where

 n-I n

 r2= (Y+1 - Yi)2/(n -1) andS2= E (Y -
 i-~1 i=l

 with no adjustment being made for bias.
 Since the hypothesis that

 V (r |ri, r2, P 1, P 2) __~V (r I p i, P2) -V(r | P1P2) -V(r I rir2)

 is at the heart of this suggested approach, Nakamura and

 Nakamura [23] examined the percentage errors which
 would result from using the approximation

 V(rIri, r2, Pl, P2) ((1 + rlr2)/n(I - rir2))

 - (2(rlr2)/n2(1 - rlr2)2) , (8.1)

 for n = 30 and values of the generating autoregressive
 parameters of (-.9, .9), (-.7, .7), (-.3, .3), (-.3, -.3),

 (.3, .3), (-.7, -.7), (.7, .7), (-.9, -.9), and (.9, .9).
 Expression (8.1) was found to provide a reasonably

 good, though far from perfect, approximation of

 V(r ri, r2, P1, P2). Moreover, the approximation provided

 13 This program, as well as the data tapes containing the values of r, ri and r2,
 which were calculated for n = 5, 10, 15, 20, 25, 30, 40, 60 and 120, are available on

 request from M. Nakamura.

 by (8.1) was found to be substantially better on the whole

 than the approximation provided by

 1 + P1P2 2p1P2

 n(lV- P1P2) n2(1 - P1P2)2

 Close examination of the findings of this study also re-

 vealed marked differences, however, in the results ob-

 tained for pi = P2 = .3 and pi = P2 = -.3, for P1 = P2
 = .7 and P1 P2 -.7, and for Pl ='P2 = .9 and

 P1 = P2 = -.9. These differences are substantiated in
 Sections 5 and 6.

 In Table 4 we show the critical points for a two-tailed

 significance level of .05, which are obtained by treating r

 as an ordinary correlation from 30(1 - rlr2)/(1 + rir2)
 observations. These results have been plotted in Figure C

 against our results for r1, r 2 > 0 and r1, r2 < 0 for n = 30.
 Bartlett's approximation does not capture the differ-

 ences which we have established depending on whether

 ri, r2 > 0 or r1, r2 < 0, nor is the fit particularly good for
 values of )l1'2 > .7. However, this approximation clearly
 is a tremendous improvement over ignoring autocorrela-

 C. Values of r.05 Found Using Bartlett's Approximation
 with r1r2 Substituted for P1P2, Compared with Our

 Values for r*,5 for rl,r2 > 0 and rl,r2 < 0

 1.0 -

 0.9

 0.8 -

 0.7-

 0.6-

 0.5

 0.4

 0.3

 * Bartlett's approximation

 0.2 - Our test, rl,r2 > 0
 * Our test, r1,r2 < 0

 0.1

 0 0.2 0.4 0.6 0.8 1.0
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 4. Bartlett's Approximation

 rlr2 30(1 - r1r2) r05 a
 r,r2 1 + rir2

 .03 28.25 .360
 .06 26.60 .371
 .09 25.04 .380
 .15 22.17 .404
 .25 18.00 .443
 .35 14.44 .491
 .45 11.37 .545
 .55 8.70 .611
 .65 6.36 .692
 .75 4.28 .796
 .85 2.43 .999

 aThese values for ro5 were obtained by using linear interpolation between the values
 of the correlation coefficient shown in Table V-A of [10].

 tion when testing the significance of sample correlations.
 As would be expected, the goodness of the approximation
 achieved appears to improve as n becomes larger. It is

 also interesting to note that Bartlett's approximation

 with r1 and r2 substituted for pi and P2 seems to provide
 better estimates of the critical points for the distribution

 p (rI r, r2) than when this approximation is used in its
 original form to find estimates of the critical points of the

 distribution p (r l P1, P2). For instance, according to
 Bartlett's approximation, when P1 = P2 = .9, then

 n(1 - P1P2)/(l + P1P2) = 3.14 and r.0 5 .87. However,
 looking at Table 1, we find that for this case r.05 = .71.
 This finding casts doubt on whether making a bias cor-
 rection in our estimates of P1 and P2 (as suggested by
 Hannan and others) would improve the comparison il-
 lustrated in Figure C between Bartlett's approach to

 estimating critical points for the distribution p(r rl, r2)
 and ours.

 9. POWER COMPARISONS

 Finally, for series of length 30 we compared the power

 of our test with the power of a test based on the popula-
 tion autoregressive parameters. For P1 = P2 = 0, + .5,

 and ? .9, 1,000 subseries of length 30 were generated
 using the relationship

 Xt = p1Xt_1 + Ut

 and ten sets of 1,000 subseries of length 30 were generated

 using the relationship

 Yt = P2Yt-I + aut + vt

 The values of a were chosen so as to generate ten sets of

 1,000 subseries for each pair of values of p1 and P2 with
 population cross-correlations, PXY, between the pairs of
 X and Y subseries in each set of 0, .1, .2, .3, .4, .5, .6, .7,
 .8 and .9, respectively. For each pair of subseries we cal-
 culated r, r1 and r2 just as before.

 We now tested the significance of each of the resulting

 50,000 sample correlations by first applying our test of
 significance for a = .10, .05, .02 and .01, and then by

 applying the corresponding critical values based on the

 true values of P1 and P2 which are shown in Table 1. For

 each set of 1,000 sample correlations corresponding to
 each pair of values of P1 and P2 we counted the number of
 times the null hypothesis

 Ho: PXY = 0

 was rejected using each test of significance. (The com-
 plete tables of our results for Pi = P2 = 0, 4.5, and +.9,
 a = .10, .05, .02 and .01, and r1, r2 > 0 are available on
 request from the authors.) Power functions comparing

 these two testing procedures for a = .05; Pi = P2 = 0,
 .5, and .9; and r1, r2 > 0 are shown in Figure D.

 D. Power Functions Comparing Our Test with a Test

 Based on pl and P2 for n = 30, a = .05, pl p2 = 0,
 .5, .9, and rl,r2> 0

 100 w /# 0

 90 i//

 80 I/ 1/ p::2O.S

 70-

 2 60 - ~/

 2?50 _Ji~~~~I 8

 10

 ?-40 /

 30 0

 20

 0 Our test

 10 Aes based on rpa r2
 0 Test based

 I ~~on IPI' P2 i I
 0 0.2 0.4 0.6 0.8 1.0

 px Y

 Our test was found to be uniformly more powerful than
 the test based on p1 and P2 for all pairs of values of pi and
 P2, and all values of a, for which power functions were
 computed. The differences between the two tests were
 found to be greater for larger absolute values of P1 and p2
 and for smaller values of a. Although we did not compute

 power functions for any other values of n, presumably the
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 advantage of our test over a test based on pi and P2
 would be smaller for larger values of n. In addition to
 being more powerful than a test of significance based on

 pi and P2, of course, our proposed test also has the ad-
 vantage that it is based on the estimated autoregressive
 properties of the series correlated rather than on the
 underlying generating properties which, in general, are
 unknown.

 [Received February 1974. Revised March 1975.]
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